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Abstract. An exact solution displaying a critical point of infinite type is given in one 
dimension. The properties are similar to those of a regular critical point, but with some 
quantitative differences. 

1. Introduction 

Recently the concept of critical point of infinite type has been introduced and its 
relation with exact models has been shown (Benguigui 1977). Its properties were 
defined as the limit of the properties of a critical point of type t (Schulman 1973) when 
t + m .  We recall that a critical point of type t may be described by the Landau- 
Ginsburg-Wilson Hamiltonian 

Xt = [ U P * ( ~ ) + ~ P ~ ' ( ~ ) + C ( V P ) ~ ]  ddV (1) 

where P is the normalised order parameter. As habitual a = A(T - To), and b and c are 
temperature independent. To is the bare transition temperature and is in general 
different from the true transition temperature. However in the mean field approxima- 
tion To becomes the transition temperature. 

In dimension d 5 2, the critical point of infinite type has remarkable properties; (1) 
the mean field solution is exact even for d = 2 and consequently To is, in this case, the 
transition temperature, (2) below To the order parameter ( P )  is constant and equal to 1, 
i.e. the ordering is perfect, (3) the susceptibility and the specific heat are null below To, 
but both diverge in the disordered phase (T + To+). 

Another way to define a critical point of infinite type is to put t =a, in the 
Hamiltonian (1). Thus, in this case, the Hamiltonian reduces to 

Zw = [aP*(r)  + c @P)*] dd V (2) 

but with P 2 s  1. It should be interesting to study the properties of this Hamiltonian in 
three dimensions, but it does not have an exact solution. As shown by several authors 
(Lajzerowicz and Pfeuty 1971, Scalapino et a1 1972, Dieterich 1976) an exact solution 
can be found in one dimension, although there is no phase transition. The system 
becomes ordered only at T = 0. In this paper we present the properties derived from 
Xw in one dimension. The free energy Fo is, in the thermodynamic limit, the lowest 
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eigenvalue of the Schrodinger equation: 

(m = 2 c / k 2 T 2 ) .  In our case we have to add the condition + = 0 for P 2 >  1, since the 
potential is infinite for PzS 1. The quantum-mechanical problem described by (3) is 
that of a particle in a box, with the potential inside the box equal to aP2 (figure 1). The 
eigenvalues of this Hamiltonian have been calculated by Rotbart (preceding paper) and 
we shall use his results. The free energy is expressed in dimensionless units eo=  
Fo(Sc)/k2T2,  as a function of K = 8ac/k2T2.  In figures 2, 3 and 4, we show, 
respectively, EO, deo/dK and d2eo/dK2, as functions of K. 

Figure 1. Potential of equation (3) as a function of P for a > 0 and a < 0 
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Figure 2. The dhensionless  free energy cg as a function of K = 8ac(kT)-*  
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Figure 3. First derivative dco/dK as a function of K. For K + -cc ( T  + 0) dco/dK goes to 1. 
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Figure 4. Second derivative d2co/dK2. If T -  To, the curve gives the variation of the 
specific heat as a function of T -  TO. 

2. Discussion 

If we suppose that T - To and that the variation of K is essentially given by the 
parameter a = A ( T -  To), the curves give the properties of the system near To, and K is 
directly proportional to T. deo/dK is equal to (dFo /da )  = (P’). In figure 3 one  can see 
the beginning of the saturation of (P’) for K << 0, since as shown below ( P 2 )  + 1 for 
T + 0. The  second derivative d2co/dK2 is equal to C/(8c /k2T’) ,  where C is the specific 
heat. Contrary to the case t = 2 (Scalapino et a1 1972) the specific heat exhibits a strong 
maximum below To ( K  < 0). However, as in the case t = 2, the one  dimensional 
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behaviour is reminiscent of mean field behaviour: for t = CO, C diverges for d 3 2 ,  and 
for d = 1 here we see that C has a marked maximum. 

At low temperature ( K  << 0), an approximate solution of (3) can be found. First we 
can consider each minimum of the potential (figure 1 )  as independent, i.e. we neglect 
the tunnelling. Furthermore, the minima are deep enough that the ground state can be 
calculated by taking the potential near P = i l  to be a straight line. The solution of this 
quantum-mechanical problem is given by Goldman et a1 (1964) and one finds that the 
ground state is 

Fo = [a  +2.34( la lk2T2/2c)1 /3]  

E = K +3.751K/2/3.  

(5  1 

(6 1 
or in terms of E and K,  

When K is strongly negative we have eo - K, ( P 2 )  - 1 and Fo - a as given by the classical 
mean field solution. As suggested by Dieterich (1976) one can define a critical region, 
outside of which the free energy is practically equal to the value given by mean field 
calculations. From ( 5 )  to (6) ,  one must write IKI >> (3 .75))  = 50. If again one assumes 
that T - To, the critical region AT is given by 

or 

This expression may be compared with the critical region of the regular ( t  = 2 )  critical 
point AT = ( b k T o ) 2 / 3 / A ~ 3 .  For t = 2 the parameter c appears cubed in the expression 
for AT. The value of the critical region depends strongly on c, which is not the case for 

The correlation length is given (Scalapino et a1 1972) by 5 = kT/(Fl  - Fo) when F1 
and FO are the first two eigenvalues of the Schrodinger equation. If T i s  low enough, we 
can use the WKB method to calculate the splitting of the levels (Landau and Lifshitz 
1966). We find that, at low temperature ( K  << 0) 

t = m .  

Since m 'I2 = &/kT, we have 

As is expected, 6 increases exponentially with decreasing temperature. The increase is 
more rapid than in the case t = 2 .  Dieterich has shown that for f = 2 we have 

where T is dependent on a, b and c .  In ( 1 1 )  there is a factor proportional to T 
multiplying the exponential, which is not present in expression (10).  
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Qualitatively, we see that the properties of the critical point of infinite type in one 
dimension are similar to those of the regular critical point ( t  = 2). This is clearly because 
of the one-dimensional aspect of the problem, for which no ordered state is permitted at 
finite temperature. However, quantitatively these are some differences. The specific 
heat has a strong maximum; the critical region does not depend too strongly on c ;  the 
correlation length, when T -+ 0, increases very rapidly. One important difference is that 
the Hamiltonian 22" can be used down to T = 0, where ( P 2 )  = 1, as is expected. This 
behaviour is observable on the curve deo/dK as a function of K, where one can see the 
beginning of the saturation (figure 3). 
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